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Influence of damage on the plastic 
instability of sheet metals under complex 
strain paths 
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During the sheet metal forming operation, internal damage occurs as a result of nucleation 
growth and coalescence of cavities around particles. This phenomenon limits the strains 
which can be achieved before the appearence of localized necking. In this paper, damage 
is represented by initially equi-axed cavities and a void growth model is extended and 
linearized for complex strain paths. For a given void distribution, a statistical study 
pointed out the existence of weak sections in the material leading to localized plastic 
flow. The influence of the physical parameters of voids on the forming limit diagrams 
is shown. 

1. Introduction 
Energy saving is an important problem in the auto- 
mobile industry that requires the use of steels of 
increasing strength. Such high characteristics are 
generally obtained by additions of alloying 
elements or by treatments leading to dual-phase 
materials. In both cases the effect is usually to 
increase the number of hard particles in the duc- 
tile matrix. In the case of sheet metal forming 
involving large plastic strains, cavities can nucleate 
at these hard particles with two main mechanisms: 
decohesion between the matrix and particles 
(equi-axe~ or failure of the particles (elongated). 
This internal damage has a great influence on the 
plastic behaviour of the materials. In particular, 
it leads to premature necking and can drastically 
decrease the fracture strain. 

The aim of this work is to analyse the influence 
of this damage on the forming limit of materials 
subjected to complex strain paths. In this analysis 
the internal damage is modelled by initially 
equi-axed cavities. A typical example of this type 
of damage is shown in Fig. 1. 

In order to determine the forming limit, a 
plastic instability calculation is carried out from 
a two-zone material [1, 2] (Fig. 2). The consti- 
tutive behaviour of the material is assumed to 

be isotropic, to follow the J2 flow theory of plas- 
ticity and to present isotropic strain-hardening 
described by: 

o = K ( ~ +  io)n~ m, 

where K, ~o, n, m are constants and o, G ~ are, 
respectively, the equivalent Mises-stress, effective 
strain and strain-rate. 

2. Theoretical procedure 
A uniform plane stress state is applied to the 
homogeneous region (a) of the model material. 
Both linear and complex strain paths consisting 
of two linear branches are considered [3, 4]. The 
limit strains are achieved when the plastic flow 
localizes only in the neck region. The compu- 
tations strongly depend on the neck orientation 
and the forming limit is obtained for the orien- 
tation minimizing the limit strains. 

The defect in the material can be interpreted in 
terms of internal damage, and thus the reduction 
in section area is due to the presence of voids. 
The problem is, therefore, to find the equivalent 
section defect representative of a given damage 
distribution. This is achieved by a statistical 
analysis: the first step is to determine the prob- 
ability of the existence of a punctual defect due 
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Figure 1 Damage by decohesion between the matrix and 
an alumina particle in a duN-phase steel sheet. 

to the alignment of  cavities in the sheet's thickness 
direction [5]. In the case of  cavities having the 
same size and being randomly distributed, the 
probability of  finding an alignment of x cavities 
is given by: 

where Cv is the volume fraction of  cavities and v 
the ratio of  the thickness of  the sheet to the thick- 
ness dimension of  the cavity: v = t /D3. The present 
analysis can be extended for the case of two 
classes in size of cavities. 

Necking will develop in an approximately linear 
band that will join the maximum number of  
punctual defects. An image of  this band of  damage 
can be obtained by representing in the plane of  the 
sheet the sites with or without a punctual damage 
defect. In Fig. 3, a typical image of defects is 
drawn. It is worthy to note that this band presents 
a high concentration of defects. The mean linear 
defect can be calculated by the mean of the differ- 
ent punctual defects affected by their own prob- 

t 

Figure 2 Model of localized necking in the Marciniak- 
Kuczynski analysis. 
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Figure 3 Location of the punctual defects in the plane of 
the sheet (shaded area). A quasi-linear band joining a 
maximum number of punctual defects is represented. 

ability and taking into account the fact that the 
continuity of  the band can be interrupted by small 
defect-free regions. The resultant mean defect 
depends only on the volume fraction of  voids and 
the characteristic v ratio. 

The simulation has been performed for a given 
volume fraction of  voids and v ratio and during 
straining the evolution of  these parameters has to 
be considered. A void growth model, therefore, 
has to be used: the approach of  Rice and Tracey 
[6] has been selected as a basis and modified for 
the loading conditions considered [7]: 

k i / R i  = C~i + Se  

where C~i is a deviatoric term associated with a 
change in shape at constant volume and Se is a 
spherical term associated with a homothetic 
change in volume. The evolution of  the coef- 
ficient S as a function of  the ratio of  the thickness 
strain increment to the equivalent strain increment 
is presented in Fig. 4 for the range of  strain paths 
considered (from uniaxial tension to equi-biaxial 
stretching), This evolution can be approximated 
by a linear equation: 

S = - - K d e 3 / d g ,  

where K is a constant (K = 0,64). The void growth 
model can be rewritten as: 

dRi/R i = Cdei - -Kde3 .  
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Figure 4 Relationship between the spherical term S of 
Rice and Tracey's model and the ratio of the thickness 
strain increment to the effective strain increment d%/ 
d& A good linear approximation can be drawn. 
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Figure 5 Effect of damage evolution on the FLDs. (a) 
Curves computed for an initial defect without void 
growth. (b) Curves computed for the same initial defect 
and taking into account the growth of voids. 

The volume fraction of  voids depending on the 
spherical part is found to be only a function of  the 
thickness strain, whatever the strain path is: 

Cv = Cvo exp (-- 3K'e3).  

This result is consistent with experimental 
observations [8]. The extension of  this void 
growth model to hardening materials with a low 
stress triaxiality is assumed to be valid [91. 

3. Results and conclusions 
In the present investigation the plastic instability 
calculations are performed considering all the 
cavities initially present in the material [10, 11]. 
Nucleation can be introduced through a nucleation 
function [12]. Furthermore, it is assumed that no 
interaction occurs between voids. 

The process of instability described by the 
model is two-fold: 

1. the inital defect derived from the initial 
damage will increase by inhomogeneous plasticity; 

2. the internal damage will grow, leading to an 
additive increase of  the defect. 

The effect of  void growth can be emphasized 
by performing two calculations starting with initial 
damage and allowing (or not allowing) damage 
evolution to occur by void growth. The results 
presented in Fig. 5 show a decrease in the form- 
ability especially in equi-biaxial stretching for 

direct linear strain paths. The forming-limit 
diagram (FLD) has also been calculated for com- 
plex strain paths consisting of two linear branches: 

1. uniaxial tension followed by equi-biaxial 
stretching (TE); 

2. equi-biaxial stretching followed by uniaxial 
tension (ET). 

The influence of  damage growth is sensitive on 
the TE FLD where the decrease of  formability can 
reach 20%. The shapes of  the FLDs in Fig. 5 can 
be explained by the behaviour of  the damage 
growth: little growth in uniaxial tension and large 
evolution in equi-biaxial stretching. 

The effect of  the initial volume fraction of 
cavities can be predicted for a given radius of 
initially spherical cavities in a material of  a given 
thickness (Fig. 6). In other words, the only float- 
ing parameter is the number of  cavities per unit 
volume. The calculation has been performed for 
observable values of  the initial damage in cold- 
rolled materials (Cvo = 5 x 10 -4, 10 -3) and for a 
reasonable upper bound value (5 x10-3). As 
mentioned previously, the influence of  damage is 
the more important in equi-biaxial stretching and 
on the TE FLD. Moreover, it can be seen that the 
internal damage is a very sensitive parameter and 
therefore its control is of  prime importance. 

In the calculation, the parameter v defined as 
the ratio of initial thickness of  the sheet to the 
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Figure 6 Effect of the initial concentration of voids (Cv0) 
on the FLDs. 

initial void radius, has been introduced into the 

statistical analysis. For a given initial damage, 
the effect of  u is presented in Fig. 7. The influ- 
ence of  this parameter is quite significant: the 
greater is u, the higher is the FLD. This result can 
have two interpretat ions:  

1. for a given initial thickness, u is inversely 
proport ional  to the initial void radius. This means 
that it is less critical to have a large number of 
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Figure 7 Influence of the parameter u (ratio of the thick- 
ness of the sheet to the thickness dimension of the 
cavities) on the level of the FLDs for a given volume 
fraction of voids. 
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Figure 8 Effect of two classes (in size) of cavities for a 
given volume fraction of voids. (a) Curves computed for 
an equal volume fraction of voids in the two classes. 
(b) Curves computed for a ratio of the number per unit 
volume of small cavities to large cavities equal to 5. 
(c), (d) The bounds for one class of voids. 

small cavities than a small number of  large cavities 
for a given volume fraction of  voids; 

2. for a given initial size of  the cavities, v is 
proport ional  to the thickness of  the sheet. This 
means that  the level of  the FLD increases with 
increasing sheet thickness. This result is in agree- 
ment with numerous experimental observations 

[13-15]. 
Most often in industrial materials the size of  

the cavities is not uniform. A first approach is to 
consider two classes of  cavities of  different size 
(A and B). A calculation has been performed with 
the following parameters (Fig. 8): large cavities 
(class A), ROA = 5/Jm; small cavities (class B), 
RoB = 1/lm, where Ro is the initial radius of  the 
cavities. The relative volume fraction of  each class 
can vary keeping a constant overall volume frac- 
tion of  cavities. Two bounds can be obtained 
assuming the presence of  only one class (cases 
c and d TE FLD in Fig. 8). One intermediate 
approach is to impose the same volume fraction 
for each class (case a) or, as usually observed, to 
have a larger number of small cavities (N  B = 5N a,  
case b). From these results it can be seen that the 
major effect of damage on the FLD (specially TE) 
is due to the large cavities. In many cases and in a 
first approach, the effect of  the small cavities can 
be neglected. 
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This work is a step towards the prediction of 
the forming limits of complex parts submitted 
to non-linear strain paths. Particularly, damage 
growth evolution is given for complex Strain paths 
along which plastic instability calculations can be 
performed. 
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